
JOURNAL OF APPROXIMATION THEORY 27, 254-270 (1979)

Approximation by Certain Subspaces in the Banach Space of

Continuous Vector-Valued Functions*

DAN AMIR

Department of Mathematical Sciences, Tel-Aviv University, Tel-AviL', Israel

AND

FRANK DEUTSCH'

Department ofMarhematics, Pennsylvania State University,
University Park, Pennsylvania 16802

Communicated by Oved Shisha

Received March 3, 1978

A theory of best approximation is developed in the normed linear space C(T, E),
the space of E-valued bounded continuous functions on the locally compact
Hausdorff space T, with the supremum norm. The approximating functions
belong to the subspace CF(T, E) of C(T, E) consisting of those functions which
have "limit at infinity" which lies in the subspace F of the normed linear space E.
A distance formula is obtained, and a selection for the metric projection onto
CAT, E) is constructed which has many desirable properties. The theory includes
study of best approximation in IX) by the subspace co, and closely parallels the
known theory of best approximation by _M-ideals (although our subspace is
not an M-ideal, in general).

1. INTRODUCTION

The starting point for this paper was our discovery that the problem of
best approximation in fro by the subspace Co has a very rich, detailed, and
complete theory associated with it. Examples are, the simple distance formula
for an element x E t oc : d(x) = d(x, co) = limn sup I x(n)! ; and the function
a: tro --->- co, defined by (ux)(n) = 0 if I x(n) I ~ d(x) and (ax)(n) = [1 ­
d(x)/I x(n)l] x(n) otherwise, which is a homogeneous, Lipschitz continuous,
selection for the metric projection P e , and which has the minimal norm

o
property: II ax II = min{11 y II : y E Pcox}. Given any x E {""\co, Co is the cone
generated by P e"" - PCox (showing that PCox is rather "fat").
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We I'.ext observed that our results (and proofs) carried over ~o tne more
general situation of best approximation in qT, E)-the space of bounded
continuous E (a normed linear space)-valued functions x on a locally compact
Hausdorff space Twith the norm II x It = sup{11 x(t)l~ : t r= T;-by the subspace
Co(T, £) of those functions "vanishing at infinity" (precise definitions will be
given below). Since Co(T, E) is an "M-ideal" in qT, E) (Proposition 4.4).
there is a substantial theory that is already known (cf. [7J and [5]). HO\yever,
even where there is some overlap with the knovm results, we have obtai nee,
in general, stronger, more detailed results, whose proofs are more dementary.

Finally, we \vere able to extend all our results to the still more ge'lend
setting of best approximation in C(T, E) by the subspace CF(T, E) of thos,~

fuections which have "limit at infinity" in the shbspace F of E (Here we
assume ttat E is "uniformly convex with respect to F"j Moreover, since
CF(T E) is /lot an A'I-ideal in C(T, E) in general (Proposition 4.5), the M­
ideal theory is of no help here. What is perhaps surprisii"ig then is that sc
much of the theory, valid for A'I-ideals, carries over to this situation.

For the remainder of the Introduction, we give the main definitions al~d

notation to be used, and summarize the results to be proved.
Let T be a locally compact noncompact Hausdorff space and % the family

of its compact subsets, directed by inclusion. Let E be a normed iinear space
and F a complete (linear) subspace of E. Consider the space X = C(T, E) of
bounded continuous E-valued functions x on T, with the norm :1 x I = sup
{!',,:( t}l : tEO r;, and its closed linear subspace Ai = CF(T, E) of functio:1s x j'1

X such that X(CD) == limt~x x(t) exists and belongs to F. (iimf~'" x(t) =, e
means that {I c T :[ x(t) - el ;?c E] EO :It for every E > 0.) For any x in /:(,
let d(x) = d(x. M) = inf{1 x - y II : YEO lvJ} denote the distance from x to M.
and Px = P\f", = {y EO M : :1 x - Y i! = d(x)} the (possibly empty) set of best
approximations in _M to x. The set-valued mapping P = p,\! : X ~ 2"f is
called the meTric projection onto AI.

The computation of d(x), as well as the construction of a selection a for P,

involve the notions of relative Chebyshev radius and relative Chebysbev
centers. If A is a bounded set in a normed linear space Y, we denote
r(y, A) = sup{'I]" - a II: a r= A], J r= Y. For any subset G of Y. we define the
relative ChebysheL' radius of A with respect to G to be retA) = inf{r( y, A): y r= G;,
aQd the set of Chebyshev centers for A in G to be Ze(A) = {y E G : r( y, A) ~~c

l'e(A)}. (When A is a single point x, these notions reduce to the distance
from x to G and the set of best approximations of x in G, i.e. rcCx) = d(x, G)
and Zc(x) = Pc;x.)

IfF is a subspace of the normed space E, then it is easy to verify that Z F(A)
is a closed convex subset of F, ZF(CO(A) = ZF{A), and ZF(,~\A) = CiZF(A)
for every scalar.:I, (where coCA) denotes the closed convex hull of A).

If F is a subspace of the normed space E, \ve say that E is uniformly com'!'x

with respect to F iff whenever x" , Yn are such that x" - }" r= F, I; x'" :: =
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II)'n II == 1 and II t(Xn + )',,)11----+ 1, it follows that X n --)'n ----+ O. This is
equivalent to the relative modulus of convexity

OF(E) = inf{l - II t(x + y)11 : Ii x II = II Y II = 1, II x - Y II ~ E, x - y E F}

being positive for every E > O. In particular, this implies that F must itself be
uniformly convex (in the ordinary sense). Thus ifF is complete, it is reflexive,
hence boundedly weakly compact (i.e. F intersects each closed ball in E in a
weakly compact set). There are two trivial examples of spaces such that E is
uniformly convex with respect to F:

(1) E a uniformly convex Banach space, and F any closed subspace;

(2) E any normed linear space and F = {O}, the trivial subspace. In this
case, CF(T, E) is the well known space Co(T, E) consisting of those x E C(T, E)
vanishing at infinity.

In addition, there are examples which do not fall into either of these two
classes, e.g.

(3) Let E be a normed space which is "uniformly convex in every
direction" (u.c.e.d.), i.e. uniformly convex with respect to everyone dimen­
sional subspace, and let F be any finite dimensional subspace.

The fact that E is uniformly convex with respect to F in this case follows
from a simple compactnesss argument and the following.

1.1. LEMMA (Day, James, Swaminathan). E is uniformly convex in the

direction of z iff II X n II ~ 1, II Yn II ~ 1, x" -)'n --+ Az and II l(x n + )'")11----+ 1
implies Az = O.

The proof of the nontrivial implication is rather tedious and can be found
in [3].

It is known [9] that every separable normed space has an equivalent
u.c.e.d. norm, while only certain reflexive (viz. superreflexive) Banach spaces
have an equivalent uniformly convex norm.

In Section 2 we give some properties of relative Chebyshev centers in
relatively uniformly convex spaces. Section 3 contains the main results of the
paper. Here we construct a continuous selection for the metric projection
which has many "nice" properties (Propositions 3.4 and 3.6). Indeed, in a
certain sense, a "nicer" selection is probably not available. In Section 4 we
specialize to the important case when E is any normed space and F = {O}.
(I.e. X = C(T, E) and lOll = Co(T, E). This includes of course the approxima­
tion of tee by Co .) In this case the results become much simpler and stronger.
Co(T, E) is an "M-ideal" in C(T, E) (in the sense of Alfsen and EfIros [1]); for
this particular M-ideal, our results are improvements upon results of
Fakhoury [5] and Holmes, Scranton, and Ward [7] established for arbitrary
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M-ideals. We also obtain an answer (Proposition 4.6) to one of the questions
posed in [7], and a partial answer to another (ef. the paragraph preceding
Proposition 4.4).

2. SOME PROPERTIES OF RELATIVE CHEBYSHEV CENTERS

IN RELATIVELY UNIFORMLY CONVEX SPACES

The following results, summarized in Lemma 2.1, are obtained by repeating
almost verbatim known results in the non-relative case (i.e. when F = E), We
shall produce them here for the sake of completeness.

2.1. LEMMA. Let E be a complete subspace of the l10rmed space E, and E be
uniformly convex with respect to F. Then every nonemptJ' bounded subset
A of E has a unique relative Chebysha center ZF(A) in E, C1nd the mapping
A -> ZF(A) is uniformly continuous on {A : rF(A) :;;:;; R} (jor every R) in its
Hausdorff semi-metric dH(A, B) = max{sup'EA d(x, B), SUPYEB dey, A)}.

Proof. The existence of relative Chebyshev centers for A in F follows
from the bounded weak compactness of F: if J'n E F are such that rF( Yn , A)
--+ rF(A). then the (Yn) are bounded and we can take a H'-convergent sub­
sequence Yn" ->-'" Y, and then for every a E A we have Ii a ~ Y I "';: lim 11 a ­
Yn II :;;:;; lim riYn, A) == fAA), i.e. rAJ" A) :;;:;; rF(A) and necessarily fAy, A)
,= I"F(A). (The same argument \vorks for any reflexive s~lbspace F or for
every ll'''-closed subspace F of a dual space E).

The uniqueness of relative Chebyshev centers fo11oVvs from (and in fact, is
equivalent to) the weaker assumption that E is uniformly convex with respect
to everyone-dimensional subspace of F: if :'::1 ,:.:::! are both in ZF(A), so is
'::0 = tcZl -+- Z2)' Choose X n E A with II x" -- ':""0 II -7 r(zo ' A) = FFCA). Then.
necessarily, II x" - .::; il->- rF(A) for i = 1,2. Let 11;" = [l/rF(A)](x n - .::;!
Then 'I u/' Ii :;;:;; I, ul " - l!2" = [1/fAA)](z2 - z:J a'1dllt:" + lie," il = [2:'
J"F(A)}:I x" -- '::0 II -> 2 so that E is not uniformly convex in the :.::-direction.

Finally we show the local uniform continuity of A ->- ZFCA): G:ven
R > °and E > 0, we may assume E < 1 and take 'I) ::> 0 so that 17 < C£/8)
o[:(£/(R-'- 2)). Let IAA) :;;:;; R, rF(B) :;;:;; R. dH(A, B) < 1) and let.:: = Z,,(A),
H" = ZF(B). We will show that liz - IV I < Eo For each a E A, choose bE B
so that I a - b I! < 7]. Hence II a - H'li :'S; I: a - b: +1 b - !":I < 'I) -;- rAE)
irnpEes r,,(A) :;;:;; Y) T J'F(B). By symmetry. rF(B) ~ y) - '"'"CA). Thus
il 0 ~ 11'· c( 217 + rF(A) and I: z - 1I' !i :S;: 27) ~ 21'1'(.1). If rAA) < E/4.
i: Z - 11' Ii < Eo If IAA) > £j4, consider x = (0 - .::);'[21) + J'p(A)] and
)' = (0 - 1\')/[2'1) -'-- I'F(A)]. Then II x II :;;:;; 1, II)' 'I ;( 1, x - Y E F, and jf

II z - 11'1 .?o E, then II x - )'1; ;? E/(R + 2) implies
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I[ a - tez + 11')11 = [rF(A) + 2}}] II tex + Y)i!

~ [rF(A) T2}}] [1 - 8F (-R ~ 2)]

< rF(A) [1 + 8F (R ~ 2)] [1 - 8F(R ~ 2)]
< rF(A)

which contradicts SUP"EA II a - tez + w)11 ;:? rF(A). Thus [I z - w II < E. I
(In fact, the uniform convexity of E with respect to F is also necessary in

order that A --+ ZF(A) be uniformly continuous on subsets of the unit ball
of E, cf. [2]).

2.2. LEMMA. ifF is a complete subspace of the normed space E and E is
uniformly convex with respect to F, then for every nonincreasing net (A",) of
nonempty bounded sets in E with IAA",) ~ R for all iX, the net z~ = ZiA",)
converges.

Proof We may assume R ;:? 1. rF(A",) is nonincreasing and converges to
some r ;:? 0. Let 10 E (0, 1) be given. If r = 0, take C\: with rF(A/3) < tE for
fJ > iX and then for y > fJ > iX and any a E Al' we have II zfJ - I y Ii ~ II Z/3 ­
a I[ + [I a - Zl' II ~ rF(A/3) + rF(AJ < 10, so that (zJ is a Cauchy net.

If r > 0, take LX with rF(A",) < 1'1[1 - 0F(EIR)]. Then for every y > fJ > ex
and every a E Ay we have II a - Zy II ~ rF(AJ ~ rF(A",), II a - z/3l! ~ rF(AfJ) ~
rF(A",), so that II Z/3 - Zy II ;:? 10 implies II a - tezfJ + Iy)11 = t II(a - I/3) +
(a - zy)11 ~ rF(AJ(l - 0F(ElrF(A",))) ~ rF(A",)(l - 8(EIR)) < I' ~ rF(Ay),
which shows r(Hz/3 + Zy), Ay) < rF(AJ, a contradiction. Therefore [I Z/3 - Zy [I

< 10 for all y > fJ > ex, and (z~) is a Cauchy net. Since F is complete, (z~)

converges. I

3. THE SELECTION a

Throughout this section, unless explicitly stated otherwise, T will denote a
locally compact noncompact Hausdorff space, E a normed linear space which
is uniformly convex with respect to a complete subspace F, X = C(T, E),
M = CF(T, E), P = PM' and d(x) = d(x, M).

We proceed first to compute the distance d(x), then define the selection ax
for Px and study its properties.

3.1. PROPOSITION. For any subspace F of the normed space E and each
XEX,

d(x) = inf{rF(x(T\K)) : KEf}.
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Proof Denote rex) = inf{rF(x(T\K» : K E Jf} Given any y E AI a'.1d
E > 0, take K E.Yr with II y(t) - y( oo)il < E for all t 1= K. They:

II x - y II ;?: suP{li x(t) - y(t)11 : t rF Ie;

;?: sup{il x(t) - y(oo)li - E: t fe K]

= r( y( CXl), x(T\K» - E ;?: i"y(x(T\K)) - E

;?: rex) -- E.

Since E was arbitrary, Ii x - y II ;?: rex) for all y E At so d(x) ;;-:: rex).
Conversely, given E > 0, take Ko E X with rF(x(T\Ko)) < rex) 7 E. Then

take Yo EO F with r(yo , x(T\Ko)) < rex) + E. Let Kl be' a compact neighbor­
hood of K o and let f be a continuous function on T satisfying f (KJ = 0 ~
f ~ I = f(T\K1). Let yet) = x(t) + f(t)[yu - xU)]. Then y EO At (since
y(t) = Yo off K1) and'

!I x - Y II = sup{f(t)11 Yo - x(t);1 : tEO T]

= sup{f(t)II)'o - x(t)1 : t t!' Ku)

~ sup{11 Yo - x(t )11 : t rt= ~l} < rex) -+- E.

Since E was arbitrary, d(x) ~ rex). I

The kernei of the metric projection PH is defined by

r.)(o) = {x E X: 0 E PMx} = {x EO X: I x'i = d(x. M):.

It is easy to see that P;/(O) is a closed and proper "cone", i.e. ,\x E P,~/(O)

whenever x E P-;)(O) and ,\ ;?: O. It is usually the case that the kernel of the
metric projection onto a proximinal, but not Chebyshev, subspace has ar;
interior. 1n spite of this, we have

3.2. PROPOSITION. ifF is any subspace of the nomled space E, then P-;./(O}
is nowhere dense.

Proof it suffices to show that r;/(O) contains no ball centered at some
x E Pi}I(O)\{O}. Let 0 < E < I: x il and choose to E T such that Ii x(1o)l: >
.1 :r I - E,'2. Choose a compact neighborhood K of to and a continuous
function f on T satisfying f(T\K) = 0 ~f "-C; 1 = fUo}· Set :: = x ~ E}·:(to)I
[211 x(tJ)I!]. Then 7 EX, 7 - X E Co(T, E) C At, and II:: - x ~I S; E.2 < E~

F~rther.

I :: I! ;?: I: 7(tO)II = ~I x(to)1I + E/2 > 'I x II = d(x) = de::)

so 7 l' P~/(O). I
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3.3. DEFINITION. For each x E X, we define

z(x) = MJ} ZF(x(T\K)).

By Lemma 2.1, the mapping x E X -+ z(x) E F is well-defined, homoge­
neous, and unformly continuous on bounded sets.

For each x E X we also define

(ax)(t) = z(x) if II x(t) - z(x)11 ~ d(x)

[
d(x)]

= z(x) + 1 - II x(t) _ z(x)11 [x(t) - z(x)] otherwise.

3.4. PROPOSITION. The mapping a : X -+ M is a selection for the metric
projection PM which is idempotent, homogeneous, uniformly continuous on
bounded sets, and (ifF oF E) nonlinear. More precisely:

(1) ax E PMxfor each x E X;

(2) a2 = a;

(3) a(exx) = txa(x) for each scalar ex;

(4) II ax - ay II ~ 211 X - y II + 211 z(x) - z(y)11 ;

(5) II ax - z(x)II ~ II X - z(x)II - d(x);

(6) II ax - z(x)11 = II X - z(x)11 ¢>- X E M;

(7) There are x E X and y E M such that a(x + y) =1= aX + ay.

Proof (1) Clearly, ax E C(T, E). Given E > 0 choose K E::f{' such that
rF(x(T\K)) < d(x) + tE and II z(x) - Zp(x(T\K)) II < tEo Then for t 1= K we
have

II x(t) - z(x)11 < II x(t) - ZF(x(T\K))11 + tE
~ rF(x(T\K)) + tE < d(x) + E;

hence II ax(t) - z(x)11 < E (for if II x(t) - z(x)II ~ d(x), ax(t) = z(x), other­
wise II ax(t) - z(x)11 = II x(t) - z(x)11 - d(x) < E). Thus ax E M. Moreover,
II x(t) - ax(t)11 ~ d(x) for all t (since if II x(t) - z(x)11 ~ d(x), then ax(t) =

z(x) by definition; while if II x(t) - z(x)II > d(x), then x(t) - ax(t) = d(x)
(x(t) - z(x))/II x(t) - z(x)II). Thus ax E Px.

(2) If X E 111, then by (1) ax E Px = x, i.e. ax = x. In particular, since
ax E M by (1), a2x = ax.

(3) This is immediate from the homogeneity of z(x) and the absolute
homogeneity of d(x).

(4) We have to distinguish between 3 cases.
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Case 1. Ii x(t) - z(x)11 ~ d(x) and II yet) - z(Y)i
'
~ dey)· In this case we

have ax - a-y = z(x) - z(y).

Case 2. II x(t) - z(x)l! > d(x) and II yet) - z(Ylll > dey). By symmetry vve
may assume that d(x)!I! x(t) - ;:(x)II :;? d(y)!il yet) - z( y)l! . Then

II C"x(t) - Gy(t)~1 ~ II z(x) - z(Y)il

+ 1![1 - ~I X(t)d~)z(X)II] [x(t) - z(x) - y(t) ,- z(Y)]I!

,[ d(x) dCy) 111" ) _, \'
,- II x(t) - z(x)!i - ;1 y(t) - z( Y)!I J JU - ,,~y!

~ II z(x) - z(y)l:

[
d(x)] [ () .-+- 1 - II.y(t) _ z(.\'):1 II xJ, - y(t)1 + I, z(x) - z(

+ d(x) II y(t) - z(y)I,1 _ d( r)
:1 x(t) - z(x)11 .

[
d(x)-'

~ II z(x) - z(Y)I: + 1 - I ,/) . _' )I' J II z(x) - z(Y)I:
,x~t - ,,~x ,

[I d(x)] I' (' ( )'+ - II x(t) _ z(x)11 I x t} - Y t I

+ II X(t)d~) z(x)11 [II y(t) - xCt)11

+ I: x(t) - z(x)li + II z(x) - z(Y)ll - dey)

= 2 II z(x) - z( y)11 + II x(t) - y(1)11 + d(x) - d( y)

~ 2 II z(x) - z(Y)!1 + 2 I x - y I,.

Case 3. We may assume without loss of generality, that II x(t) - z(x)l: >
d(x) and i! yet) - z(Y)11 ~ dey). Then

'I ~ ( \ - ,( \1
'
- 'II -( .) + [1 - d(x) ] [.( ) - -( )1 _ _f "~iiI uX t l a-} t J , - ,"'\ 11 x(t) _ z(x)11 x t "-,X. "-\.Hi

,;:: 'I ,,) -( ')11 --L -II d(x) 1 II .(, , ')1'"-': I, z~X -"- J , - I' Y( , _() I ! " )( t) - z(.\ ,
L 'oOt)- .. xIJ

~ II z(x) - z(Y)11 + II x(t) - z(X) I - d(:'.")

~ II z(x) - z(Y)11 + II x(t) - y(r)11

+ II yet) - z(y)ll + II z(y) - zex)1 - d()c)

~ 2 II z(x) - z(Y)11 + II x(t) - y(t)l! + d( y) - d(x)

~ 2 II z(x) - z(y)11 + 2 II x - y:
This concludes the proof of (4).
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(5) Since z(x) E F, it is also in M (regarded as a constant function on
T: Z(X)(1) = z(x». Hence II x - z(x)11 ~ d(x). Ifax(1) # z(x), then

II ax(t) - z(x)11 = II x(t) - z(x)I1- d(x)

:"( II x - z(x)11 - d(x).

Thus this inequality holds for all 1 and (5) is proved.

(6) If x EM, ax = X and hence II ax - z(x)11 == II x - z(x)II . Conver­
sely, if x $ M, then d(x) > 0 and (5) implies II ax - z(x)11 < II x - z(x)l! .

(7) Choose any vector e E ElF such that II ell = 1 = d(e, F) and define
x(t) = e for all 1 E T. Then

I = II x II ~ d(x) = inf II x - )' II = inf sup Ii e - y(1)11
}'Elvl YE1\1 leT

~ infll e - III = d(e, F) = 1,
fEF .

so d(x) = II x II = 1. Choose any to E T and choose a continuous function
f: T ->- [0, 1] so that 1(to) = I and f vanishes ofr a compact set. Set y =
(-1) x. Then y E M (indeed, y( 00) = 0), ay == y, ax = z(x) = 0, d(x + y) =

d(x) = 1, and .::(x + y) = z(x) = 0 imply

a(x + y)(to) = z(x + y) = 0 =!= -e

= y(to) = ax(to) + aY(10)· I

3.5. Remark. It is not possible in general to choose a linear selection for
Pi\,f' For ifit were, then by specializing so that C(T, E) = loc and CF(T, E) =

Co (i.e. take T = N, E = ~, and F = {On, it would follow that this selection
would be a continuous linear projection from teo onto Co , hence implying Co

is complemented in too , which is not the case.
Also, part (7) shows that a is not even "additive modulo M". This is in

sharp contrast to the metric projection itself which always has this property:

for each x E X, Y E M.
We now show that the selection a satisfies a certain extremal property.

3.6. PROPOSITION. For every x E X and t E T,

II ax(t) - z(x)11 = min{11 y(t) - z(x)11 : y E Px}.

In particular,

II ax - z(x)11 = min{11 y - z(x)1I : y E Px}.
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Proof Ifax(t ) =, ::(x) there is nothing to prove. If not, then " 0".'((1) ~

::(x):i = I' :e(t) - z(x)11 - d(x), while for every y E Px we have

Ii x(t) - z(x):I - Ii yet) - ::(x)11 ~ , x(t) - y(t)1 ,;; d(x)

so that

Ii O"x(t) - :::(x)II == Ii x(t) - :::(x)11 - d(x) ~ I: y(t) - :::(x)'I· I

3.7. PROPOSITION. If x EX", M, then for every J E /vI there exiSTS A ?: 0
and Y1 ,.\'2 in Px such that Y = .\(J\ - Y2 - y(::c)). Thus M = cOiie(Px -­
Px) -;-- F.

Proof Let x' E Px. Then Px - Px = P(x - x' -- ::-(x» - PIx - x' +
:::{x» and z(x) E Px - x' + z(x) = P(x - x' -,-- .::(x». Therefore we may
assume z(x) E Px, i.e. II x - z(x)11 = d{x). By scaling y, we may assume
II Y Ii ~ td(x) and hence that II y - y( 00 )11 ~ d(x). Define

)\(1) = z(x) + yet) - y{ co) if II x{t) - z(x)- .i·(t) - r( celi :s; de-:)

= xU) - I () ()d{X) ( ) ()I [x(t) - z(x) - ret) + r( co)1
:XT-ZX-l't-.Ll'CIJ" "'-

,. .' otherwise.

Clearly )\ E X. Given E > 0, choose K E.Yt with Iy(r) -- y( C(.;)I < E/2 otT
K. Let t rF K. If II x(t) - z{x) - y(t) + y( CIJ )Ie ~ d(x), then I )'1(0 - ::(.i")i[ =~­

I: y(t) -- ]'(00)11 < Ejl < E. If !I x(t) - ;:-(x) - yet) + y(,co)i, > d(x), then
1ylt) - ::-(x) - y(t) + Y(O'J)I' ,= II x(t) - ::(x) - yet) ..L y(oc)il - d(x) -(:

II x(1) - z(x)11 + y(t) - y( co)11 - d(x) ~ :1 yet) - y( 00)1' < E/2. Thus i; J\{t) ­
z(x)!1 '-S; O\(t) - z(x) - yet) ..L y( co)li + Ii yet) - y( coW < E. This shows that
lim t _ oo YICt) = z(x), hence Y1 E .M. Also clearly I x(t) - Yl(t)ll ,e::; d(x) for all t

so that I: x - Jr II ,e::; d(x) and J'I E Px.
Set Y2 = Yt - Y + y{oo). Then J'2 EM. If II x(t) - ::-(x) ~ y(t)~. y(co)'1 s:

d(x) , then II x(t) - Y2(t)11 = II x(t) - z(x)11 ~ d(x). If I' x(t) - :;(x) - )(1) +­
y( r:J))Ii > d(x), then

II x(t) - l'2(t)j ~ ~C!L Ix(t) - ::-(x) ,
I x(t) - z(x) - )'(1) + y(oc)11 '

..L [1 - -----~----] I ,.(t) - 1'( Tjl, I'X(t)-Z(x)-y(t)+y(ce}1 ,-' .'~"

< d(x)2
'" !I x(t) - z(x) '- y(1) ..L y( co)1i

[
d{x) I ,- oj ~ d(')

-+- t - II x(t) - z(x) - 1'(1) + y(:x;) I I J d(.\, -.\,.

Thus )'2 E Px.
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3.8. Remark. We cannot, in general, discard y( (0). E.g. when x(t) = e,
e E ElF, then z(x) = PFe and d(x) = dee, F), so that for every y E Px we must
have y( 00) = PFe = z(x). Thus cone(Px - Px) cannot be all of .M unless
F = {O}.

3.9. PROPOSITION. If x, )' E X and y' E Py, then x' =:= y' + a(x - y') E Px

and II x' - y' II ~ 211 x - y II + 2 SUpy"ePY II z(x - y")11 . In particular,

dH(Px, Py) ~ 2 II x - y Ii + 2 max{ sup II z(x - y")II, sup II z(y - x")II}.
Y" E=P'y x" ~Px

Proof x - x' == x - y' - a(x - y') so that II x - x' II = d(x - y') =
d(x) and x' E Px. Also

II x' - y' II = II v(x - y')11 ~ II a(x - y') - z(x - y')11 + [I z(x - y')11

~ II x - y' - z(x - y')11 - d(x - y') + II z(x - y')11

(using 3.4(5»

~ II x - y' II + 2 II z(x - y')11 - d(x)

~ II x - y II + II y' - y II + 2 II z(x - y')11 - d(x)

= II x - Y II + 2 II z(x - y')11 + dey) - d(x)

~ 2 Ii x - y I! + 2 II z(x - Y')II

~ 2 II x - Y II + 2 sup II z(x - y")II.
y"EP1/

By symmetry, for each x' E Px there is y' E Py so that

II x' - y' II ~ 211 x - y II + 2 sup II z(y - x")II.
::,."EP:A'

The last statement in the proposition follows easily from these two inequali­
ties. I

3.10. Remark. The second term in the upper bound for dH(Px, P)') cannot
be dropped in general. For let E be uniformly convex and F be a closed sub­
space. If we take x(t) = 11 and yet) = v for all t, then for each x' E Px,
y' E Py we easily deduce that x'(oo) = PFU, )"(00) = PFv, and II x' - y' II ~
II x'( (0) - y'( 00)11 = II PFu -- PFv [I. Thus dH(Px, Py) ~ II PFu - PFv II. If
the second term in the upper bound for dH(Px, Py) could be dropped, it
would follow that PF is Lipschitz continuous. But this is false in general
(cf. Holmes and Kripke [6], example 5).
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4. THE Co(T, E) CASE AND l'\ll-IDEALS

In this section we specialize the results of Section 3 to the case when E is
any Hormed space and F = {O}. That is, we consider approximation ig
C(T, E) by Co(T, E), the subspace of continuous E-valued functions on T
vanishing at infinity: x EO Co(T, E) iff x EO CCT, E) and for each E > 0, {t EO T:

I! x(t)l, :;:c E} is compact. (We leave to the reader the simple exercise of special i­
zing the results of this section even futher to obtain the important case of
approximation in (CYj by the subspace Co .)

4.1. PROPOSITIO;\l. Let T be any locally compact noncompact spac!!, E aliY
l10rmed linear space, X = CCT, E), M == Co(T, E), and P = PH . Then:

(l) For every x EO X. d(x) = d(x, iII) = limt~7. sup I xU)i (=== il1fK "f

SUPtET\K II xU )",);
(2) For every x EO X\M, M = cone(Px - Px). In fad. for each J E /\1

with Iy I: < }d(x), Y = x' - x" for some x', x" EO Px;

(3) dH(Px, Py) ~ 2 I x - )' Ilfor each x, y E X and 2 is the best constant:

(4) PM is HausdOiff continuous and 100ver semicontinuous but not upper
semicontinuous at any point of X\!vf;

(5) P-I(O) == {x EX: 0 E Px} is nowhere dense.

Proof (1) is a consequence of Proposition 3.1 since

inf 1"0(x(T\K)) = inf sup ,I x(tW.
KE.Yf' KE.;4" tET ,K

(2) is a particular case of Proposition 3.7 and its proof.

(3) is a particular case of Proposition 3.9 In order to see that the
constant 2 is best possible, take any e E E with :1 e ,I = 1, fix to E T and a
compact neighborhood [( of to' and choosefEO C(T, IR) to satisfy f(T.K) ==
o ~f"~ 1 = f(to)· Set x(t) == (J(t) + t] e, yet) = 2f(,) e. Then .\' EO x.
Y E M, I \' - Y Ii = t, d(x) = t, x'(t) == f(t) e is in Px, but

dH(Px, Py) = dH(Px, y) :;:c il x' - y I :;:c Ii x'(tu) - .1'(to)11

= i:J(to) e Ii = I = 2 II x - )' I, .

(4) The Hausdorff continuity follows from (3), while the lower semi­
continuity follows from lower Hausdorff-semicontinuity which, in tum,
follows from Hausdorff continuity (cf. [8], [4]). To show that P is not upper
semicontinuous at any point x E X\M, it suffices (by [4], Theorem 1) to shov{
that Px is not compact. But if Px were compact, so would be Px - P.\"
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which, by (2) contains the ball in M of radius td(x). Thus AI must be finite
dimensional which is not the case.

(5) follows from Proposition 3.2. I
Observe that the same argument which proved 4.1(4), combined with a

previously mentioned result of Holmes, Scranton, and Ward [7J, shows that
4.1(4) is validfor every M-ideal M in an arbitrary normed linear space X.

We also obtain

4.2. COROLLARY. the elements in X = G(T, E) which attain their norm
form a dense set in X.

Proof By 4.1(5), it suffices to show that if x E G(T, E) does not attain its
norm, then x E Pl:l(O). Fix any to E T. Since II x(to)11 < II x II , for each compact
set K E ~:r, there exists t ¢= K such that II x(Oll > II x(to)ll. Hence SUPt¢K

II x(t)11 > II x(to)II implies that

d(x) = inf sup II x(r)11 ;;?: II x(to)lI.
KE.;f' t$K

Since to E T was arbitrary, d(x) ;;?: II x II and hence x E p;l(O). I
Holmes, Scranton, and Ward [7J had proved the analogue of Corollary 4.2

when X = PJJ(H), the bounded linear operators on a Hilbert space H.

4.3. PROPOSITION. Let T, X, M, P, and d(x) be as in Proposition 4.1. Then
the function a defined on X by:

(ax)(t) = 0

[
d(x) ]

= I - II x(t)11 x(t)

if II x(t)11 ~ d(x)

otherwise,

has the following properties:

(l) a is a homogeneous selection for the metric projection P;

(2) a satisfies the Lipschitz condition II ax - ay II ~ 2/1 x - y II, and
2 is the best constant;

(3) II ax II ~ II x II -- d(x), and II ax II = II X II iffx E M;

(4) a is minimal in norm, i.e. II ax II = min{11 y II : y E Px} for each
x E X. This even holds pointwise, i.e. II ax(t)11 = min{11 y(OII : y E Px} for each
XE X, tE T;

(5) a is not additive; in fact, a is not even additive modulo M, i.e. there
exist x E X and y E M with a(x + y) 0/= ax + ay.

Proof The only addition to the results of Section 3 in this particular case
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is the second statement in (2). But this follows from the same example we

used in Proposition 4.1(3): the x' there is just ux. I

Some of the results of Proposition 4.1, as well as the existence of a selection
for P having certain desirable properties, follow from the general theory of
.• M-ideals". Recall that a closed subspace M of a Banach space X is caned
an M-ideal if there is a (linear) projection Q of X* onto the annihilator M­
ofM in X* such that II x* II = !I Qx* I: -+- I: x* - QX"'.! for all x* E X*. i.e
il;l~ is an L-summand in X*. (For the definitions, properties, and characteri:w.­
tion of M-ideals, see Alfsen and Effros [I].)

Fakhoury [5] gave a nonconstructive proof. using Michael's selection
theorem. of the existence of a continuous homogenous selection for the
metric projection P,H onto an M-ideal Min X. Holmes, Scranton, and Ward
[7] proved that if M is an M-ideal in X, then dH(PMx, FA: y) .«: 2!1 x ~. Y!I
for all -Y, y in X and span PMx = M for every x E X\,M. They asked '"fe:
which lVI-ideals M is it true that P-;:,l(O) has no interior?" They showed thiS
to be the case for Co C fOG and the compact operators '{(H) C .:J(ff) en a
Hilbert space H (and false for" M-summands"). A partial answer to thei,' to
their question is given by 4.1 (5) and the following proposition.

4.4. PROPOSITION. Co(T, E) is an M-ideal in C(T, E).

Proof If we want to avoid representation theorems for qT, E)*, we may
use the following characterization of A'I-ideals by the "3-ball property"
[l] : For each Xl , X 2 , X 3 , x in X, E, 1'1 , 1'2, 1'3 > 0, and Yt ' Y2 ' Yl in !vI with
I: Xi - Yi Ii < ri - E, II Xi - X II < r,. - E (i = 1. 2, 3), there is ayE M with
I x, - Y II < r i (i = 1,2,3).

Indeed, take a compact set K C T such that I Yi(t)il < E off K. and then
II x.,{t)il < 1', off K. Take a compact neighborhood K 1 of K andfE C(T) with
f(T\K1) = 0 ~f:S; I = f(K). Let yet) = f(t) x(t). Then.1-' EM and II Xi - Y:;
< ri (i = I, 2, 3). I

We note that the results in 4.1 and 4.3 are stronger than tbose obtained by
using M-ideal theory, and their proofs are elementary. Moreover, the results
of Section 3 do not follow from the M-ideal theory, as can be seen by
comparing Remark 3.10 above and Theorem 2 of [7). or directly from

4.5. PROPOSITION. (1) If the Stone-Cech compactification of T, (3T, is not
the one-point compactification T*, then CF(T, E) is an M-idea! in C(T, E) if
and only ifF = {O};

(2) If (3T = T* and E is finite-dimensional, then CpeT, E) is an M-ideal
in C(T, E) if and only ifF is an M-ideal in E. In the general case, if CF(T. E) is
an ill-ideal in C(T, E), then F is an M-ideal in E.
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Proof (1) The "if" part was proved in Proposition 4.4. For the other
half, take Zo E F with II Zo II = I, and qI =P q2 in f3T\T*. Choose any continuous
g: f3T\T* ---+ [-1, I] withg(qI) = -1 :(; g :(; I = g(q2)' By Tietze's theorem
we can extend g to a continuous function g : T ---+ [-I, 1]. Let xI(t) =

get) zo, xlt) = [get) + 1] zo, xs(t) = [get) - 1] zo, h(t) = 0, Y2(t) = ro,and
Yit) = -Zo . Then for every 0 < E < 1, II Xi - Yi II < 1 + E and II Xi - Xl II
< 1 + E (i =, 1,2,3). But if Y E F satisfies II Xi - Y II < l + E (i = 2, 3), we
must have II 2zo - y( ex))11 < 1 + E and II 2zo + y( (0)11 < I + E; hence
4 = 114zo II < 2 + 2E < 4, a contradiction.

(2) In this case C(T, E) = C(f3T, E). The annihilator of CiT, E) is
P-voo , i.e. the FJ..-valued point measures at 00, and this is an L-summand in
C(T, E)* = the E*-valued measures on T* ifand only if FJ.. is an L-summand
in E*, i.e. iff F is an M-ideal in E.

If F is not an M-ideal in E, take el , e2 , es in E, gl , g2 , gs in F, and 1'1 ,

1'2 , 1'3 , E > 0 which fails the 3-ball property and consider the constant
functions xi(t) = ei, J'i(t) = g, in C(T, E) and CF(T, E). respectively, which
fails the 3-ball property. I

Holmes, Scranton, and Ward [7] asked "When does the following equation
hold:

n{PMX: X E r;.}(O), II x II = I} = {O}?" (*)

They showed this to be case for the M-ideal of compact operators 't?(H) in
f!IJ(H) and the M-ideal Co in roc . (They also claimed that (*) fails for "M­
summands.")

We answer their question by proving that (*) always holds.

4.6. PROPOSITION. If X is any normed linear space and Many proximinal
subspace, then (*) holds.

Proof Take any y E M\{O} and any x E Pi}(O) with II x II = 1. If y E PMx,
let z = exy, where ex = sup{f3 ?': 0 : f3y E PMx} ?': 1. Then Z E P,\Jx (since
Pj\Jx is closed), hence 0 E PM(x - z), d(x - z, llI) = d(x, 11-'1) = 1, and thus
II X - z II = 1. If Y E PM(x - z), then

Y E PAlx - Z = PAlx - exy implies (1 + ex) Y E PAlx

which contradicts the choice of 0:. Thus y rt PM(x - z). I
In the proof we actually showed that if y E M\{O}, then there exist Xl , X2

in P;/(O), II xIII = II x2 11 = 1, such that J' rt PMXI n PMX2 . In some cases, we
may even take X 2 = -Xl' Indeed, taking X = (~ x ~)"" M = ~ x {OJ,
and X = (1, 1), we get PMx n PM ( -x) = {OJ.
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A natural question then is : For which proximinal subspaces 111 of a
normed space X is it true that there exists an x E p-;)(O), i! xii = 1, such that
PMXnPM(-x) = {O}?

The answer is clearly affirmative if M is a Chebyshev subspace or even
if some point in X\M has a unique best approximation in M. Indeed, the
following result is a complete characterization.

4.7. PROPOSITION. Let lv! be a proximinal subspace of a nonned space X.
The following are equivalent for an element x E Pj;[\O) 1:'1tl1,1 x I = 1:

(1) puxnPu(-x)={O);

(2) x is a relatively M-extreme point of the unit ball in X, i.e. x is not rhe
midpoint ofa line segment in the unit ball which is pamlle! to M.

Proof (1) =. (2).lf(2) fails, we can write x = HY1 + h), where I)', :1 ,:;;; I
and Y == J\ ~ Y2 E M\,{O}. By replacing )'. , y by y; = KVi + x) and y' =

J~ - y~ if necessary, we may assume that II x ± J' II :::;; I and hence)' E P,'>[x n
PM(-x). Thus (1) fails.

(2) =. (I). Let y E P,~tCx) n PM(-X), Then Ii x ± J 11= d{x, M) == L
Setting J\ = x + y, )'2 = X - y, we obtain 'II Yi II = I, Y1 - )'2 E ll-f: and
x = 1(Y1 --:- )'2)' Since x is relatively M-extreme')'l = J2 , i.e. y = O. I

In particular, the question also has an affirmative answer whenever the
set ext R(x) n pz:l(O) is nonempty. (Here ext B(X) denotes the set of extreme
points of the unit ball in X.) As a corollary of this remark, we obtain

4.8. COROLLARY. If the unit bal! in E has an extreme point, X = C(T. E)"

and ill = Co(T, E), then there is an x E PZ:/(O) lI'ith I' x I, = t and p\,x n PH
(-~x) = {OJ.

Proof Let e E ext B(E) and x(t) == e for all t. Since II x II = 1 and d(x, An
== I, X E rij(O). Thus it suffices to show x E ext B(X). If not, there exists
y E X,,{O] such that II x ± J I! ,:;;; 1. Then I:)'!I ,:;;; 1 and!1 e ± y(t)1 ,,-( J for all t.
Since e is extreme, yet) = 0 for all t, a contradiction. I
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