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A theory of best approximation is developed in the normed linear space C(T, E),
the space of E-valued bounded continuous functions on the locally compact
Hausdorff space 7, with the supremum norm. The approximating functions
belong to the subspace Cr(T, E) of C(T, E) consisting of those functions which
have “limit at infinity” which lies in the subspace F of the normed linear space E.
A distance formula is obtained, and a selection for the metric projection onto
Cr(T, E) is constructed which has many desirable properties. The theory includes
study of best approximation in /» by the subspace ¢, , and closely parallels the
known theory of best approximation by M-ideals (although our subspace is
not an M-ideal, in general).

1. INTRODUCTION

The starting point for this paper was our discovery that the problem of
best approximation in 7, by the subspace ¢, has a very rich, detailed, and
complete theory associated with it. Examples are, the simple distance formula
for an element x €7, : d(x) = d(x, ¢;) = lim,, sup | x(n)| ; and the function
o:ly—>cy, defined by (ox)) =0 if | x(n)| < d(x) and (ox)}n) = [1 —
d(x)]| x(17)|] x(n) otherwise, which is a homogeneous, Lipschitz continuyous,
selection for the metric projection P, , and which has the minimal norm
property: [ ox || = min{l| y || : y € P, x}. Given any x € {5\cy, ¢, is the cone
generated by P,x — Py x (showing that P x is rather “fat”).
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We next observed that our results (and procfs) carried over o the more
general situation of best approximation in C{T, E)—ithe space of bounded
continuous £ {a normed linear space)-valued Function* x on a locaily compact

Hausdorff space T with the norm || x|} == sup{|| x{z}] : 1 € T,—Dby the subspace
ColT, E) of those functions “vanishing at infinity” (precise definitions will be
given beiow; Since Cy(T, E) is an “M-ideal” in C(Z, E} (Proposition 4.4},
there is a substantial theory that is already known {(cf. [7] and [S]). Fowevm
even where there is some overlap with the known results, we have obtai
in general, stronger, more detailed results, whose proofs are more elementary.

Finally, we were able to extend all our results to the stili more general
setiing of best approximation in C(7, E) by the sebspace C{7, £} of those
functions which have “limit at infinity” in the subspace 7 of £. {Here we
assume that £ is “uniformly convex with respect t¢ £.'j Moreover, sinc
CH(T. EYis nor an M-ideal in C(T, E) in general (Proposition 4.5}, the A7-
ideal theory is of no help here. What is perhaps surprising then is that sc
much of the theory, valid for M-ideals, carries over to this situation.

For the remainder of the Introduction, we give the main definiticns and
notation 1o be used, and summarize the results to be proved.

Let 7 be a locally compact noncompact Hausdorff space and  the family
of 1ts compact subsets, directed by inclusion. Let £ be a normed linear space
and F & complete (linear) subspace of E. Consider the space X = C(T, £} of
bounded continuous E-valued functions x on 7, with the norm || x| = sup
{Ix(). : re 77, and its closed linear subspace M = Cp(7, ;Of functions ¥ in
X such that \(uo) = lim,_.,, X(f) exists and belongs to F. (iim, . x{(r} = ¢
means thet {ie T [x(t) —e'| = € € A for every € > 0., y For any x in X,

(D

let di{xy = d(x. | 1’) =inf{| x — y || : 3y € M} denote the distance from x to A,
ané Px = Pyux ={ye M |x— } I = d(x)} the (possibiy empty} set of best
approximations in M to x. The set-valued mapping 2 = P, 1 X — 2% is

calied the merric projection onto M.

The computation of d(x). as well as the construction of a selection o for £.
involve the notions of relative Chebyshev radius and relative Chebwslmv
centers. If 4 is a bounded set in a normed linear space Y, we denot
H{y, Ay =sup{|y —al|:aed},ye Y. Foranysubset G of Y. we define ihs
relative Chebyshev radius of A with respect to G to be rG{' 4) =inf {r( v, AV el
and the set of Chebysher centersfor Ain Gtobe Z{A) ={yeG:r{y, A} =
relA4)). (When A4 is a single point x, these notions reduce to the distance
from x to G and the set of best approximations of x in G, i.e. ro{x) = d{x, &)
and £{x) = Psx.)

If Fis a subspace of the normed space E, then it is easy to verify that Z (4
is a closed convex subset of F, Z(co(4)) = ZHA), and Z{nAd) = aZ{A4)
for every scalar A (where co(A) denotes the closed convex hull of 4).

If F is a subspace of the normed space E, we say that £ is uniformly conrex
with respect to F iff whenever x,, y, are such that x, —y,€F, [ x,}| =
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Iyalf=1 and | ¥{x, + yol — 1, it follows that x, — y,->0. This is
equivalent to the relative modulus of convexity

Sp(e) =inf{l — [ Hx+ Y :Ix|=lyI=LIx =yl =ex—yeF}

being positive for every e > 0. In particular, this implies that F must itself be
uniformly convex (in the ordinary sense). Thus if F' is complete, it is reflexive,
hence boundedly weakly compact (i.e. F intersects each closed ball in Fin a
weakly compact set). There are two trivial examples of spaces such that F is
uniformly convex with respect to F:

(1) E a uniformly convex Banach space, and F any closed subspace;

(2) E any normed linear space and F' = {0}, the trivial subspace. In this
case, Ci(T, E)is the well known space Co(T, E) consisting of those x € C(T, E)
vanishing at infinity.

In addition, there are examples which do not fall into either of these two
classes, e.g.

(3) Let E be a normed space which is “uniformly convex in every
direction” (u.c.e.d.), i.e. uniformily convex with respect to every one dimen-
sional subspace, and let F be any finite dimensional subspace.

The fact that F is uniformly convex with respect to F in this case follows
from a simple compactnesss argument and the following.

1.1. LemmA (Day, James, Swaminathan). E is uniformly convex in the
direction of z iff || x, | < L [ p.ll < L, Xy — 3 > Az and || 3(x, + 3o)l — 1
implies Az = 0.

The proof of the nontrivial implication is rather tedious and can be found
in [3].

It is known [9] that every separable normed space has an equivalent
u.c.e.d. norm, while only certain reflexive (viz. superreflexive) Banach spaces
have an equivalent uniformly convex norm.

In Section 2 we give some properties of relative Chebyshev centers in
relatively uniformly convex spaces. Section 3 contains the main results of the
paper. Here we construct a continuous selection for the metric projection
which has many “nice” properties (Propositions 3.4 and 3.6). Indeed, in a
certain sense, a “nicer” selection is probably not available. In Section 4 we
specialize to the important case when £ is any normed space and F = {0}.
(IL.e. X = C(T, E) and M = Cy(T, E). This includes of course the approxima-
tion of 7. by ¢, .) In this case the results become much simpler and stronger.
C(T, E)is an “M-ideal” in C(T, E) (in the sense of Alfsen and Effros [1]); for
this particular AM-ideal, our results are improvements upon results of
Fakhoury [5] and Holmes, Scranton, and Ward [7] established for arbitrary
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M-ideals. We also obtain an answer (Proposition 4.6} to one of the questions
posed in [7], and a partial answer to another (cf. the paragraph preceding
Proposition 4.4).

2. SOME PROPERTIES OF RELATIVE CHEBYSHEV CENTERS
IN RELATIVELY UNIFORMLY CONVEX SPACES

The foliowing results, summarized in Lemma 2.1, are obtained by repeating
almost verbatim known results in the non-relative case (i.e. when F = E). We
shall produce them here for the sake of completeness.

2.1. LEMMA. Let F be a complere subspace of the normed space E, and £ be
uniform{y convex with respect to F. Then every nonempty bounded subset
A of E has a unigue relative Chebyshev center Z (A} in F, and the mapping
A — Z(A4) is uniformly continiious on {A : r (4} < R} (Jor every R) in its
Hausdorff semi-metric dy(A, B) = max{sup,., &{x, B), sup,. d(y, 4)}.

Pioof. The existence of relative Chebyshev centers for 4 in 7 follows
from the bounded weak compactness of F:if 1, € F are such that #:( v, , 4)
-— r{A), then the (y,) are bounded and we can take a w-convergent sub-
sequence ), —“y. and then for every a € A we have |a — »| <Clim|la
Vol <l rdy,, A) == r(A4), 1.e. re(y, A) << r(A) and necessarily rx(y, 4}
= rz{A4). (The same argument works for any retlexive subspace F or for
every w*-closed subspace F of a dual space E).

The uniqueness of relative Chebyshev centers follows from (and in fact, is
equivalent to) the weaker assumption that £ is uniformly convex with respect
to every one-dimensional subspace of F:if z;, =, are both in Z{4), so is

7y = 3(z; + z,). Choose x,€ 4 with || x, — 7, || = {2, , A) = rz{4). Then,
necessarily, |'x, — = | > re(4) for i =1,2. Let u,” = [i/re{Dlx, — )
Then u || <1, " — 1,® = [1re(A)(zs — z.) and ™ + | = {2/
rel Y] X, — 2o || = 2 so that £ is not uniformly convex in the z~direction.

Finally we show the local uniform continuity of 4 — Z{(4): Given
R >0 and € > 0, we may assume e < | and take 7 > § so that n < (¢/8)
Se(el(R -+ 2)). Let re(A) < R, re(B) < R, dy{A, B) < v and let = = ZA{4).
w = £ B). We will show that Il z — w| << e Foreachac 4, choose 58

sothatlig — b <m. Hencella —w| < |ja—»b]| +i|b— il <n—rid8;
implies redd) < n +— r{B). By symmetry. r{B) < v — r:{4). Thus
la— 1w <20+ rd) and |z — wl <$ 2 — 2r {4 I re(d)y < eld,

fz—wl <e If rgfd) > ¢4, consider x ={a— z)/[2n + re{4)] and
¥y ={a— w)[2n & rpe(4)]. Then {|x|| <1, <1, vxy—yeF and if
|z —w|>=ethenlx — y| = ¢/(R + 2) implies
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la — 3z + wi = [re(4) + 2911 3(x + »)

< [ri(A) + 29] [1 — Or (’E%? )]

o~ f € €
< 74(4) [1 +bF(R—§—2.)H1 _BF(R+2)]
< rp(4)
which contradicts sup,e, || @ — 3z + w)| = ri(4). Thus ||z — w| < e [

(In fact, the uniform convexity of E with respect to F is also necessary in
order that A -— Zz(4) be uniformly continuous on subsets of the unit ball
of E, cf. [2]).

2.2. LemMA. If Fis a complete subspace of the normed space E and F is
uniformly convex with respect to F, then for every nonincreasing net (A,) of
nonempty bounded sets in E with rg(4,) < R for all «, the net z, = Z(A,)
converges.

Proof. We may assume R > 1. ry(4,) is nonincreasing and converges to
some r = 0. Let e <(0, 1) be given. If r =0, take o with rz(4p) < 3¢ for
B > « and then for y > 8 > xand any a€ 4, we have ||z — z, || <[z —
all +lla— z,|| <r(dg) + re(4,) < ¢, so that (z,) is a Cauchy net.

If ¥ > 0, take « with r(4,) < /[l — 8x(¢/R)]. Then for every y > 8 > «
andeveryac A, wehavella — z, || <ri(4,) <redy), |la — zp || < re(dg) <
ri(4,), so that [z, — 2z, > e implies || — ¥zp + 2)| = 4 l(a — z5) -
(@ — 2)I < r(AN1 — Sx(e/rp(4.))) < re(4X1 — 8(e/R)) <1 < ri(4,),
which shows r(3(zs + z,), 4,) < rp(4,), a contradiction. Therefore || z; — z, ||
< e for all y > B > «, and (z,) is a Cauchy net. Since F is complete, (z,)
converges. [

3. THE SELECTION o

Throughout this section, unless explicitly stated otherwise, T will denote a
locally compact noncompact Hausdorff space, E a normed linear space which
is uniformly convex with respect to a complete subspace F, X = C(T, E),
M = CL(T, F), P = Py, and d(x) = d(x, M).

We proceed first to compute the distance d(x), then define the selection ox
for Px and study its properties.

3.1. PROPOSITION. For any subspace F of the normed space E and each
xXe X,
d(x) = inf{ry(x(T'\K)) : Ke X7},
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Proof. Denote r(x) = inf{rr(x(T\K)): K} Given any y¢«
€ > 0, take Ke " with || y(1) — y(0)|| < eforall t ¢ K. Then

and

n
=
by

| x — yll = sup{lix(t) — y(O)ll : 1 & K
= sup{l| x(¢) — y(0); — € : 1§ K
= r(¥(0), X(T\K)) — € = rf{x(T"\K}) — ¢

= r(x) — e

Since ¢ was arbitrary, || x — y || = r(x) for all y € A s0 d(x) = i(x).

Conversely, given € > 0, take K, € " with #{x(T\K)) < #{x) — e Then
take v, € F with #(y,, x(T\K,)) < r(x) -+ €. Let K, be a compact neighbor-
hood of K, and let f be a continuous function on T satisfying f{X;) =0 <
F<t =fFK). Let p@t)=x(t)+ f({O)ly, — x(1)}. Then »e M {since
¥(£) = y, off K;) and

| x =yl =sup{f(D)| yo — x(t)]: 1€ T}
= sup{f (1)l yo — XN}, : 1 & Ky}
< sup{ll o — x(@) 2 1 ¢ K} <rx) + e

Since ¢ was arbitrary, d(x) < r{x). B
The kernel of the metric projection P, is defined by
PHOY ={xeX:0ePyx} =f{xe X:| x| =dx. ;.

1t is easy to see that P,/(0) is a closed and proper “cone”, ie. Ax e PO}
whenever x € P;/(0) and A = 0. It is usually the case that the kernel of the
metric projection onto a proximinal, but not Chebyshev, subspace has ar
interior. In spite of this, we have

3.2. PrOPOSITION. If F is any subspace of the normed space E, then P70}
is nowhere dense.

Proof. 1t suffices to show that P;/(0) contains no ball centered at some
xe P00} Let 0 <e<| x| and choose #,€ T such that | x{s)ll >

lx 1 — €2. Choose a compact neighborhocd K of 7y and a continucus
function f on T satisfying f(7\K) = 0 < f << 1 = F{#,). Set = = x - ex(ip)f
RIx(zl]. Then zelX, z —xeC(T,EYC M, and |z — x| <2 <<
Further,

Lol 21zt = | x() + €2 > | x| = dlx) = d(2)

s¢ z & PO

640/27/3-5
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3.3. DermNITION. For each x € X, we define

z(x) = }clerl}{ Z (x(T\K)).

By Lemma 2.1, the mapping x € X — z(x) € F is well-defined, homoge-
neous, and unformly continuous on bounded sets.
For each x € X we also define

(ax)(r) = z(x)  if | x(1) — z(x)l| < d(x)

d(x)

= z(x) + [1 — M] [x(t) — z(x)] otherwise.

3.4. PROPOSITION. The mapping o : X — M is a selection for the metric
projection P, which is idempotent, homogeneous, uniformly continuous on
bounded sets, and (if F == E) nonlinear. More precisely:

(1) ox € Pyx for each x € X;

(2) o*=o;

(3) o(ax) = xo(x) for each scalar «;

@ lfox — oyl <2 x =yl + 20 2z(x) — z(p);

(5) llox —z(0)I <l x — 2 — d(x);

6) llox =z =llx — z(x)| = xe M,

(7) There are x € X and y € M such that o(x -+ y) % ox + oy.

Proof. (1) Clearly, ox € C(T, E). Given € > 0 choose K< X such that
re(x(T\K)) < d(x) + e and | z(x) — Z(x(T\K)) | < %e. Then for ¢ ¢ K we
have

| x(2) — z(ll < || x(8) — Zex(T\K))|| -+ 4e
S re(x(T\K)) + 3e <d(x) + ¢;

hence || ox(r) — z(x)| < € (for if || x() — z(0)| < d(x), ox(f) = z(x), other-
wise || ox(2) — z(x)]] = || x(t) — z(x)|| — d(x) < €). Thus ox € M. Moreover,
| x(t) — ox(2)|| < d(x) for all ¢ (since if || x(t) — z(x)|| < d(x), then ox(f) =
z(x) by definition; while if || x(¢) — z(x)|| > d(x), then x(¢) — ox(¢) = d(x)
(x(t) — zCND x() — z(x)|}}). Thus ox € Px.

(2) If x e M, then by (1) ox € Px = x, i.e. ox = x. In particular, since
ox € M by (1), o?x = ox.

(3) This is immediate from the homogeneity of z(x) and the absolute
homogeneity of d(x).

(4) We have to distinguish between 3 cases.
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Case 1. || x(t) — z{x)|| < d(x} and || y(t) — z(3}! < d(y). In this case weg
have ox — oy = z(x) — z(y).
Case 2.

l| x(t) — 2(x0)| > d(x) and || y(1) — z(¥)| > d(y)
may assume that d(x)/|! x(t) — z()|| = 43 y()

}— z{y)ll. Then
I ox(t) — op(t)] < || 2(x) — (¥

+1[1 - ()

'}, By symmetry we

@ ) B — = = — 03]

By i)

O — 2~ T = ) O~ A

< z(x) — z(»)
‘ d(x) I
. [1 _ H—\‘(?T—-TYW] [} 26y — p(6)' -+ | 2x) —

0 =20,
A = Y

<1209 = 200+ [ = s 1209 — 20
d(x) o N
1 = T = g 10 0

\ d(x) ‘ .
RO =zl ey — x(0)

F{ix(@) — 2 + 1 z2(x) — z(3)I] — ()
=2l z(x) — z(p)| + || x(6) — y()| 4 d(x) — d{y)
<2 z(x) — (DI + 21 x — yli

Case 3. We may assume without loss of generality, that || x(z} — z{xjji >
d(x) and | (1) — 2(y)| < d(). Then

. i dix) i

| ox(t) — op(t)ll = |Z(\) + [1 — m%w] [x() — z(x)] — :‘(}\)\
0 N P ax) .,

<N z(x) — z(3)) - lLl T 1 it x{r) (x)

< |l 2(x) — z(WI + | (e} — z{x}] — d(x)
< z2(x) — z()I -+ 1l x(z) — y()

+ §y() — 2() + 1 2(3) — 21 — dx)
<2 z(x) — z(p + | x(@) — ()] + d(y) — d(x)
L2\ z(x) — z()| -+ 20 x — yi,

This concludes the proof of (4).
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(5) Since z(x) e F, it is also in M (regarded as a constant function on
T : z(x)(t) = z(x)). Hence || x — z(x)|| = d(x). If ox(¢) 5 z(x), then

[ ox(t) — z()]| = [ x(1) — ()|l — d(x)

< x — 2(0ll — d(x).

Thus this inequality holds for all # and (5) is proved.

(6) If xe M, ox = x and hence || cx — z(x)] = |l x — z(x)| . Conver-
sely, if x ¢ M, then d(x) > 0 and (5) implies || ox — z(x)| < | x — z(x)]| .

(7) Choose any vector e € E\F such that || e]] = 1 = d(e, F) and define
x(t) = efor all t e T. Then

I =llx|l =d(x) = inf | x — yll = inf sup e — y(@)
= inflle — /|| = dle, F) = 1,

so d(x) = x| = 1. Choose any t,€ T and choose a continuous function
f: T—10, 1] so that f(z,) = 1 and f vanishes off a compact set. Set y =
(—f) x. Then y € M (indeed, y(©0) = 0), 6y =y, 0x = z2(x) = 0,d(x + y) =
d(x) =1, and z(x + y) = z(x) = 0 imply

o+ $)t) = 2x +3) =0 # —e
= p(ty) = ox(ty) + ay(ty).

3.5. Remark. 1t is not possible in general to choose a lirear selection for
P,, . For if it were, then by specializing so that C(T, E) = 7, and C(T, E) =
¢, (le. take T = N, F = R, and F = {0}), it would follow that this selection
would be a continuous linear projection from Z,, onto ¢, , hence implying ¢,
is complemented in £, , which is not the case.

Also, part (7) shows that o is not even “additive modulo A#”. This is in
sharp contrast to the metric projection itself which always has this property:

Py(x +y)y = Pux + Pyy

foreach xe X, ye M.
We now show that the selection o satisfies a certain extremal property.

3.6. PROPOSITION. For every xc X and te T,
| ox(#) — z()l| = min{]| p(z) — z(x)l| : y € Px}.
In particular,

ox — z(x)|l = min{l| y — z(x)l! : y € Px}.
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Progf. If ox(r) = z(x) there is nothing to prove. If not, then | ox{t) —
z(x)| = | x(t) — z(x)|] — d(x), while for every y € Px we have

Hx(@) — 200 — [ y() — 2000 < x(0) — () < d{x)
5o that

Il ox(t) — 20N = || x(0) — z(x)| — d{x) <[ 3{1) — 2] §

3.7. PROPOSITION. If xe X' M, then for every y € M there exists A =0
and yy, ys in Px such that y = Xy, — y» — y{o0Y). Thus M = conel Px —
Pxy — F.

Proof. Let x'€Px. Then Px — Px = P{x — x' — z(x)} — P{x — X' +
z{x)) and z(x)e Px — x' -+ z(x) = P(x — x" — z{x)). Therefore we may
assume z(x)e Px, ie. || x — z{(x)|| = d(x). By scaling v, we may assume
il v I << 3d(x) and hence that || 3 — w(0)|| < d(x). Define

i
-
o

e’

= z{x} + ¥(t) — y(o) if |l x(t) — z(x) — vy — vl < A

o da(x)
= x(1) I x(t) — z(x) — v(t) + v(ec)

[x{t) () — y(1) + r{=x)}

otherwisz,

Clearly y, € X. Given € > 0, choose K& ¢ with |31} — (oo} < &2 off
Ko Let t ¢ K I || x(2) — z(x) — y(1) + y(oo)i < d(x), then | 3,{r) — z{(x)] =
Bwp{e) — (o)l < €2 < e M 0 x(t) — z{x) — p(t) + (o0} > d{x), then
[ 34{t) — =(x) — ¥(t) + y(oo)! = || x(t) — z(x) — p{t) + {0} — d{x) <
1x(8) — z(x) + (1) — y(oo)l| — d(x) <if y(1) — 3{(o)| < /2. Thus| y{r} —
()] < t) — z(x) — p(t) + p(oo)i + [ p(#) — #{00)}! < e. This shows that
lim;_., 3,(¢) = =(x), hence 3y € M. Also clearly | x{r) — 1,{t}}l << d{(x) for all ¢
so that ' x — 4y |l < d(x) and y, € Px.

Set y, =31 — ¥ + 3(c). Then yy,e M. If || x{#) — 2(x) — 3{(¢} — ()i <
d{x). then || x(r) — yo(O)] =l x(¢) — z(x)l| < d(x). If | x{t) — =(x) — 3(} +
y{0)|l > d(x), then

(1) =y < fﬂ-,)t;(\_)clf%—TWT Ix(1) — =y
== e e ] 0 — )
ST = z(x)d-(f);m Ty
B [E T — -(Yﬁ'—l({) 7 §(§§ dix) = d(x)

Thus y, € Px.
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3.8. Remark. We cannot, in general, discard y(o0). E.g. when x(¢) = e,
e € E\F, then z(x) = Pre and d(x) = d(e, F), so that for every y € Px we must
have y(o0) = Pre = z(x). Thus cone(Px — Px) cannot be all of A unless

F = {0},

3.9. ProrOSITION. If x,ye X and y' € Py, then x' = y' + o(x — y')e Px
and || x" — 3| <2l x =yl + 2 8upyrepy | 2(x — y")| . In particular,

du(Px, Py) < 2| x — y|l + 2 max{ sup Il z(x — ¥, sup I z(y — x")if}.

yey x” 2Px

Proof. x—x"=x—y —o(x—y') so that |x — x"|| =dkx —y') =
d(x) and x" € Px. Also
[x" =yl =lolx — YN <lolx —y) — zx — ¥ + I z2x — )|
Slhx — " —zlx — O — dlx — ¥) + | 2(x — y)i
(using 3.4(5))

<x =yl -+ 2 z(x — y)Il — d(x)

<ix =yl += 11y =yl + 2zx — p)| — d(x)
=lx—=pll+ 2lz(x — yW + d(») — d(x)
<2lix =yl + 2itz(x — )

< 2|x =yl + 2 sup [[z(x — ).

y"ePy

By symmetry, for each x" € Px there is y’ € Py so that

[x" =y <2fx =yl + 2 sup [[z(y — x")|.

r"ePx

The last statement in the proposition follows easily from these two inequali-
ties. |}

3.10. Remark. The second term in the upper bound for dy(Px, Py)cannot
be dropped in general. For let £ be uniformly convex and F be a closed sub-
space. If we take x(¢t) =« and y(t) = v for all ¢, then for each x’' € Px,
»" € Py we easily deduce that x'(o0) = Pgu, y'(0) = Ppv, and || x' — y'|| =
| x'(00) — y' ()| = || Pru — Ppo|l. Thus dy(Px, Py) = || Ppu — Ppv|. If
the second term in the upper bound for dy(Px, Py) could be dropped, it
would follow that Py is Lipschitz continuous. But this is false in general
(cf. Holmes and Kripke [6], example 5).



N
o)
wn

VECTOR-VALUED FUNCTIONS
4. THE Cy(T, E) CASE AND M-IDEALS

In this section we specialize the results of Section 3 to the case when £ 1s
any normed space and F = {0}. That is, we consider approximation in
C{T, EY by C|(T. E), the subspace of continuous E-valued functions on 7
vanishing at infinity : x € C(T, E) ff x e C(T, EYand forzach ¢ > 0,{re I':
Il x(#}, = e} is compact. (We leave to the reader the simple exercise of speciali-
ziag the results of this section even futher to obtain the important case of
approximation in /,, by the subspace ¢, .)

1. PrROPOSITION. Let T be any locally compact noncompact space, E any
normed linear space, X = C(T, E), M = C(T, E), and P = P, . Then:

(1Y For every xe X, d(x) = d(x, M) = lim,_, sup | x(6) {= infyen
SUPrer i |l X{(1)):

(2} For every x’eX\M M = cone(Px — Px), In fuct. for each y = M
with'| v < 3d(x), y = x' — X" for some X', x" € Px;

(3) dH(PXv 4 .y) =

{4y Py is Hausdo;ﬂ continuous and lower semicontinuous but not upper
Semicontinuous at any point of X\M:

(5y PH0) = {xe X:0¢e Px}is nowhere dense.

‘X — y || for each x. v = X and 2 is the best constani:

Proof. (1) is a consequence of Proposition 3.1 since

inf ry(x(T'K)) = inf sup | x{()|l.

Kex Ke s 1eT K

{2) is a particular case of Proposition 3.7 and its proof.

(3} is a particular case of Proposition 3.9 In order to see that the
constant 2 is best possible, take any e F with ||e | =1, fix 2T and a
compact neighborhood X of 7y, and choose /e C{T, R) to satisfy f(T"K) =
0l =f(t). Set ‘c(t) =[f(®) + §le, vt} = Zf{') e. Then xe X,
yeM, | x—yli=%dx)=53L X)) =f(eisin Px. b

dy(Px, Py) = dy(Px. y) Z 1 x" — y | Z 1 x'(1) — x(zp)l
={fltyell=1=2"1x—y|.

{4} The Hausdorff continuity follows from (3}, while the lower semi-
continuity follows from lower Hausdorff-semicontinuity which, in turn,
follows from Hausdorff continuity (cf. [8], [4]). To show that P is not upper
semicontinuous at any point x € X'\ M, it suffices (by [4], Theorem 1) to show
that Px is not compact. But if Px were compact, so would be Py — Px
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which, by (2) contains the ball in M of radius 3d(x). Thus M must be finite
dimensional which is not the case.

(5) follows from Proposition 3.2. J§
Observe that the same argument which proved 4.1(4), combined with a
previously mentioned result of Holmes, Scranton, and Ward [7], shows that

4.1(4) is valid for every M-ideal M in an arbitrary normed linear space X.
We also obtain

4.2. COROLLARY. The elements in X = C(T, F) which attain their norm
Jorm a dense set in X.

Proof. By 4.1(5), it suffices to show that if x € C(7, FE) does not attain its
norm, then x € P3/(0). Fix any 1, € T. Since || x(z,)|| < |/ x ||, for each compact
set KeJ, there exists t¢ K such that || x(¢){| > [| x(7,)l] . Hence sup.
1 Xl > |l x(t,)]| implies that

d(x) = inf sup | x(0)fl = I x(%)ll.
Kex ¢k

Since t, € T was arbitrary, d(x) > | x || and hence x € P;;(0). [

Holmes, Scranton, and Ward [7] had proved the analogue of Corollary 4.2
when X = %(H), the bounded linear operators on a Hilbert space H.

4.3. ProprosITION. Let T, X, M, P, and d(x) be as in Proposition 4.1. Then
the function o defined on X by:

(ox)(t) =0 if | x(0)l < dx)

o d(x) .
= [1 i x(t)H] x(1) otherwise,

has the following properties:

(1) o is a homogeneous selection for the metric projection P;

(2) o satisfies the Lipschitz condition ||ox —oy|| <2| x — y|, and
2 is the best constant;

(3) loxil <llxll— d(x), and || ox || = | x| iff x € M;

4) o is minimal in norm, ie. |ox| = min{]|y| :ye Px} for each
x € X. This even holds pointwise, i.e. || ox(t)]] = min{| y(t)|| : y € Px} for each
xeX, teT;

(5) o is not additive; in fact, o is not even additive modulo M, i.e. there
exist x€ X and y € M with o(x + y) # ox -+ oy.

Proof. The only addition to the results of Section 3 in this particular case
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is the second statement in (2). But this follows from the same example we
used in Proposition 4.1(3): the x’ there is just ox. §

Some of the results of Proposition 4.1, as well as the existence of a selection
for P having certain desirable properties, follow from the general theory of
“M-ideals”. Recall that a closed subspace M of a Banach space X is cailed
an M-ideal if there is a (linear) projection @ of X* onto the annihilator M-
of M in X* such that || x*| = || Ox*| -~ || x* — Ox* | for all x*e X*, ie
M= isan L-summand in X**. (For the definitions, prope*tles, and characterize-
tion of M-ideals, see Alfsen and Effros [1].)

Fakhoury [5] gave a monconstructive proof, using Michael’s selection
theorem. of the existence of a continuous homogenous seiection for the
metric projection Py, onto an M-ideal M in X. Holmes, cram’on and Warg
{7] proved that if M is an M-ideal in X, then d,(Pux, Py PR
for all x, y in X and span P,x = M for every x € X\ M. !'hey aaked ‘:o*
which M-ideals M is it true that P;;(0) has no mterior?” They showed this
to be the case for ¢, C 7/, and the compact operators ¥(H) C #(H) on 2
Hilbert space H (and false for “*M-summands”). A partial answer to their to
their question is given by 4.1(5) and the following proposition.

4.4. ProprosITION.  Ci(T, F) is an M-ideal in T(T, E).

Proof. 1f we want to avoid representation theorems for C(7, E)*, we may
use the following characterization of AM-ideals by the “3-ball property”
[11: Foreach x;, xp, X3, xIn X, €, 5, , ¥y, s >0, and 3, . vy, ¥y in M with
ix, — i <r,—ellxi— x|l <r,—e(i=1.2,3), the;e isa ve M with
x, — vl <n(i=1,23)

Indeed, take a compact set K C 7 such that | y,(i}jl < € off K, and then
Il x{t)l] < r; off K. Take a compact neighborhood X of K and fe C{T") with
HTK) =0<f<1 =f(K).Let y(t) = f(t) x(¢}. Then y € M and || x; — v
<r{i=1223. §

We note that the results in 4.1 and 4.3 are stronger than those obtained by
using M-ideal theory, and their proofs are elementary. Moreover, the results
of Section 3 do not follow from the M-ideal theory, as can be seen by
comparing Remark 3.10 above and Theorem 2 of [7], or directly from

4.5. PropPOSITION. (1) If the Stone-Cech compactification of T, BT, is not
the ome-point compactification T*, then C (T, EY is an M-ideal in C{(T, E) if
and only if F = {0};

(2 If BT = T* and E is finite-dimensional, then C (T, E) is an M-ideal
in C(T, EYif and only if F is an M-ideal in E. In the general case, if CAT. F) is
an M-ideal in C(T, E), then F is an M-ideal in E.
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Proof. (1) The “i[” part was proved in Proposition 4.4. For the other
half, take z, € Fwith || z, || = 1, and ¢, = g, in ST\T™*. Choose any continuous
g BT\T* — [—1, 1] with §(¢;) = —1 << § < 1 = §(q,). By Tietze’s theorem
we can extend § to a continuous function g: T — [—1, 1]. Let x(f) =
8(2) 2o, x5(t) = [g(t) + 1] zp, x3(t) = [g(t) — 1] 2, yo(t) = 0, y(t) = ry ,and
y(t) = —z,. Then forevery 0 < e < 1,|lx; —y; |l <1+ eand || x; — x1 |l
<1+ e(@=1,2,3). Butif yeFsatisfies || x;, —y|| <[ + € (i = 2, 3), we
must have |2z, — ()| <14 € and |2z, -+ y(0)| <1 + €; hence
4 = | 4z,]| < 2 + 2e < 4, a contradiction.

(2) In this case C(7, E) = C(BT, E). The annihilator of Cx(T, E) is
Ftv, , i.e. the F*-valued point measures at co, and this is an L-summand in
C(T, E)* = the E*-valued measures on T* if and only if F* is an L-summand
in E*, i.e. iff Fis an M-ideal in E.

If Fis not an M-ideal in E, take e, ,e,,e5in E, g, , 85,85 in F, and ry,
ry, #5,€ >0 which fails the 3-ball property and consider the constant
functions x,(¢t) = e;, y:(t) = g; in C(T, E) and Cg(T, E). respectively, which
fails the 3-ball property. [

Holmes, Scranton, and Ward [7] asked “When does the following equation
hold:

() {Pux: x € Poi(0), | x|l = 1} = {0}?” )

They showed this to be case for the M-ideal of compact operators #(H) in
#(H) and the M-ideal ¢, in £, . (They also claimed that (*) fails for “AM-
summands.””)

We answer their question by proving that (*) a/ways holds.

4.6. PrROPOSITION. If X is any normed linear space and M any proximinal
subspace, then (*) holds.

Proof. Take any y € M\{0} and any x € P;;(0) with || x || = 1. If y € Ppx,
let z =ay, where o« =sup{f >0: Bye Pyx} > 1. Then ze Pyx (since
Pyx is closed), hence 0 € Py (x — 2), d(x — z, M) = d(x, M) = 1, and thus
lx —z] =1 1f ye Py(x — z), then

y€Pyx — z = Pyx — ay implies (I + a) y € Pyx

which contradicts the choice of «. Thus y ¢ Py(x — z). §

In the proof we actually showed that if y € M\{0}, then there exist x; , x;
in P,HO), ) X, 1l = 1] %, || = 1, such that y ¢ Pyx; 0 Pax, . In some cases, we
may even take x, = —x; . Indeed, taking X = (R X R),, M = R x {0},
and x = (1, 1), we get Pyx N Py—x) = {0}.
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A natural question then is : For which pmximinal subspaces M of a
normed space X is it true that there exists an x € P;(0), | xi| = I, such that
Pyx 0y Pl —xy = {0}?

The answer is clearly affirmative if M is a Chebyshev subspace or even
if some point in X\M has a unique best approximation in M. Indeed, the
following result is a complete characterization.

4.7. PROPOSITION. Let M be a proximinal subspace of a normed space X.
The following are equivalent for an element x € P3/(0) with | =1
() Pux n Py(—x) = {0}:

{2y  xis arelatively M-extreme point of the unit ball in X, i.e. x is not the
midpoint of a line segment in the unit ball which is parallel 1o M.

X

Proof. (1) = (2). If (2) fails, we can write x = 1( v+ Yo)» where ' 3, ) < 1
and v =) ¥2 € M\{O}. By replacing y;, v by y; = X3, + x) and ' =
¥y — ¥y if necessary, we may assume that || x 4 31| < I and hence y € P,x N

Py(—x). Thus (1) fails.

(2) = (1), Let yePy(x)NPyu(—x). Then x4yl =d{x, M) =1
Setting 3y =x + y, ¥, =x — y, we obtain | v, =1, yy — )y, € M: and
N = H ¥, + ys). Since x is relatively M-extreme, y, = ), ,te. » =0. §

in particular, the question aiso has an affirmative answer whenever the
set ext B(x) N P;(0) is nonempty. (Here ext B(X) denotes the set of extreme
points of the unit ball in X.) As a corollary of this remark, we obtain

4.8. CoROLLARY. If the unit ball in F has an extreme porn! X =0C(T. Fy,
and M = C{T, E), then there is an x € Py(0) with | x|, = L and Pyx Py,
{(—xy = {0

1

Proof. Letecext B(E)and x(t) == e for all 7. Since || x|, = I and d{x, M)
== 1, x € P} (0). Thus it suffices to show x eext B(X). If not, there exists
yeX {0isuchthat||x -y < 1. Then| | < tande + y(r) < I foralls.
Since ¢ is extreme, y(¢) = 0 for all 1, a contradiction. §
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